
[tex]\angle ABC[/tex] can be congruent to [tex]\angle DBC[/tex] sometimes, if ray BC is an angle bisector of [tex]\angle ABC[/tex].
[tex]m \angle DBC = 30^{\circ}\\\\m \angle ABC = 20^{\circ}[/tex]
This implies that [tex]\angle ABC[/tex] will not always be congruent to [tex]\angle DBC[/tex] if ray BC lies within [tex]\angle ABD[/tex].
[tex]m \angle DBC = 25^{\circ}\\\\m \angle ABC = 25^{\circ}[/tex]
This implies that [tex]\angle ABC[/tex] can sometimes be congruent to [tex]\angle DBC[/tex] if ray BC is an angle bisector that lies within [tex]\angle ABD[/tex].
[tex]\angle ABC[/tex] can be congruent to [tex]\angle DBC[/tex] sometimes, if ray BC is an angle bisector of [tex]\angle ABC[/tex].
Learn more here:
https://brainly.com/question/9169904